Que es un SMBDOO?
El SMBDOO esta ligado a base de datos orientada a objetos, la información se representa mediante objetos como los presentes en la programación orientada a objetos. Cuando se integra las características de una base de datos con las de un lenguaje de programaciónorientado a objetos, el resultado es un sistema gestor de base de datos orientada a objetos (ODBMS, object database management system). Un ODBMS hace que los objetos de la base de datos aparezcan como objetos de un lenguaje de programación en uno o más lenguajes de programación a los que dé soporte. Un ODBMS extiende los lenguajes con datos persistentes de forma transparente, control de concurrencia, recuperación de datos, consultas asociativas y otras capacidades.
Las bases de datos orientadas a objetos se diseñan para trabajar bien en conjunción con lenguajes de programación orientados a objetos como Java, Visual Basic.NET y C++. Los ODBMS usan exactamente el mismo modelo que estos lenguajes de programación.
Los elementos básicos de un Data WareHouse
Datawarehouse
Que es un Data Ware House?
Es un repositorio de datos de muy fácil acceso, alimentado de numerosas fuentes, transformadas en grupos de información sobre temas específicos de negocios, para permitir nuevas consultas, análisis, re porteador y decisiones.
Que es lo que le preocupa a los ejecutivos?
Se tienen montañas de datos en la compañía, pero no podemos llegar a ellos adecuadamente. Nada enloquece más a los ejecutivos que dos personas presentando el mismo resultado de operación pero con diferentes números y los ejecutivos lo que buscan es ver la información pero desde diferentes ángulos, mostrando únicamente lo que es importante para tomar una decisión en la empresa, finalmente los ejecutivos saben que hay datos que nunca serán confiables, por lo que prefieren que se eviten en los reportes ejecutivos.
Uno de los valores más importantes de una organización es la información.
Estos valores normalmente son guardados por la organización de dos formas:
Los sistemas operacionales de registros Y el Data Warehouse
Los objetivos fundamentales de un Data WareHouse son:
· Hace que la información de la organización sea accesible
· Hacer que la información de la organización sea consistente
· Es información adaptable y elástica
· Es un seguro baluarte que protege los valores de la información
· Es la fundación de la toma de decisiones
·
· Sistema fuente
· Área de trafico de datos
· Servidor de presentación
· Modelo dimensional
· Procesos de negocios
· OLAP
· ROLAP
· MOLAP
· Ad Hoc Query Tool
· Modelado de aplicaciones
· Meta Data
Datamining
el datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.
Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales.
De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento.
Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:
Determinación de los objetivos. Trata de la de limitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining.
Pre procesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining.
Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial.
Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones.
Datamining
el datamining (minería de datos), es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto.
Básicamente, el datamining surge para intentar ayudar a comprender el contenido de un repositorio de datos. Con este fin, hace uso de prácticas estadísticas y, en algunos casos, de algoritmos de búsqueda próximos a la Inteligencia Artificial y a las redes neuronales.
De forma general, los datos son la materia prima bruta. En el momento que el usuario les atribuye algún significado especial pasan a convertirse en información. Cuando los especialistas elaboran o encuentran un modelo, haciendo que la interpretación que surge entre la información y ese modelo represente un valor agregado, entonces nos referimos al conocimiento.
Aunque en datamining cada caso concreto puede ser radicalmente distinto al anterior, el proceso común a todos ellos se suele componer de cuatro etapas principales:
Determinación de los objetivos. Trata de la de limitación de los objetivos que el cliente desea bajo la orientación del especialista en data mining.
Pre procesamiento de los datos. Se refiere a la selección, la limpieza, el enriquecimiento, la reducción y la transformación de las bases de datos. Esta etapa consume generalmente alrededor del setenta por ciento del tiempo total de un proyecto de data mining.
Determinación del modelo. Se comienza realizando unos análisis estadísticos de los datos, y después se lleva a cabo una visualización gráfica de los mismos para tener una primera aproximación. Según los objetivos planteados y la tarea que debe llevarse a cabo, pueden utilizarse algoritmos desarrollados en diferentes áreas de la Inteligencia Artificial.
Análisis de los resultados. Verifica si los resultados obtenidos son coherentes y los coteja con los obtenidos por los análisis estadísticos y de visualización gráfica. El cliente determina si son novedosos y si le aportan un nuevo conocimiento que le permita considerar sus decisiones.
No hay comentarios:
Publicar un comentario